A limited set of muscle synergies for force control during a postural task.

نویسندگان

  • Lena H Ting
  • Jane M Macpherson
چکیده

Recently developed computational techniques have been used to reduce muscle activation patterns of high complexity to a simple synergy organization and to bring new insights to the long-standing degrees of freedom problem in motor control. We used a nonnegative factorization approach to identify muscle synergies during postural responses in the cat and to examine the functional significance of such synergies for natural behaviors. We hypothesized that the simplification of neural control afforded by muscle synergies must be matched by a similar reduction in degrees of freedom at the biomechanical level. Electromyographic data were recorded from 8-15 hindlimb muscles of cats exposed to 16 directions of support surface translation. Results showed that as few as four synergies could account for >95% of the automatic postural response across all muscles and all directions. Each synergy was activated for a specific set of perturbation directions, and moreover, each was correlated with a unique vector of endpoint force under the limb. We suggest that, within the context of active balance control, postural synergies reflect a neural command signal that specifies endpoint force of a limb.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional muscle synergies constrain force production during postural tasks.

We recently demonstrated that a set of five functional muscle synergies were sufficient to characterize both hindlimb muscle activity and active forces during automatic postural responses in cats standing at multiple postural configurations. This characterization depended critically upon the assumption that the endpoint force vector (synergy force vector) produced by the activation of each musc...

متن کامل

Muscle synergy organization is robust across a variety of postural perturbations.

We recently showed that four muscle synergies can reproduce multiple muscle activation patterns in cats during postural responses to support surface translations. We now test the robustness of functional muscle synergies, which specify muscle groupings and the active force vectors produced during postural responses under several biomechanically distinct conditions. We aimed to determine whether...

متن کامل

Task - level feedback can explain temporal recruitment of spatially - fixed muscle synergies 1 throughout postural perturbations

21 Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be 22 explained using a low-dimensional set of muscle synergies or M-modes. While it is clear that 23 both spatial and temporal aspects of muscle coordination may both be low-dimensional, 24 constraints on spatial versus temporal features of muscle coordination likely involve different 25 neural control mech...

متن کامل

Task-level feedback can explain temporal recruitment of spatially fixed muscle synergies throughout postural perturbations.

Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesiz...

متن کامل

Running Head : Muscle synergies for balance

Recently developed computational techniques have been used to reduce muscle activation patterns of high complexity to a simple synergy organization and to bring new insights to the long-standing degrees of freedom problem in motor control. We used a non-negative factorization approach to identify muscle synergies during postural responses in the cat and further, to examine the functional signif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 93 1  شماره 

صفحات  -

تاریخ انتشار 2005